Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Let $$\phi(x,y)$$ be a continuous function, smooth away from the diagonal, such that, for some $$\alpha>0$$, the associated generalized Radon transforms \begin{equation} \label{Radon} R_t^{\phi}f(x)=\int_{\phi(x,y)=t} f(y) \psi(y) d\sigma_{x,t}(y) \end{equation} map $$L^2({\mathbb R}^d) \to H^{\alpha}({\mathbb R}^d)$$ for all $t>0$. Let $$E$$ be a compact subset of $${\mathbb R}^d$$ for some $$d \ge 2$$, and suppose that the Hausdorff dimension of $$E$$ is $$>d-\alpha$$. We show that any tree graph $$T$$ on $k+1$ ($$k \ge 1$$) vertices is realizable in $$E$$, in the sense that there exist distinct $$x^1, x^2, \dots, x^{k+1} \in E$$ and $t>0$ such that the $$\phi$$-distance $$\phi(x^i, x^j)$$ is equal to $$t$$ for all pairs $(i,j)$ corresponding to the edges of the graph $$T$$.more » « less
-
We prove new results of Mattila–Sjölin type, giving lower bounds on Hausdorff dimensions of thin sets E ⊂ R^d ensuring that various k-point configuration sets, generated by elements of E , have nonempty interior. The dimensional thresholds in our previous work (Greenleaf et al., Mathematika 68(1):163–190, 2022) were dictated by associating to a configuration function a family of generalized Radon transforms, and then optimizing L^2-Sobolev estimates for them over all nontrivial bipartite partitions of the k points. In the current work, we extend this by allowing the optimization to be done locally over the configuration’s incidence relation, or even microlocally over the conormal bundle of the incidence relation. We use this approach to prove Mattila–Sjölin type results for (i) areas of subtriangles determined by quadrilaterals and pentagons in a set E ⊂ R^2; (ii) pairs of ratios of distances of 4-tuples in R^d; and (iii) similarity classes of triangles in R^d, as well as to (iv) give a short proof of Palsson and Romero Acosta’s result on congruence classes of triangles in R .more » « less
-
We introduce a class of Falconer distance problems, which we call of restricted type, lying between the classical version and its pinned variant. Prototypical restricted distance sets are the diagonal distance sets. We prove results in Euclidean spaces and also for Riemannian metrics g close to the product of Euclidean metrics. For product metrics, this follows from known results on pinned distance sets, but to obtain a result for general perturbations g, we present a sequence of proofs of partial results, leading up to the proof of the full result, which is based on estimates for multilinear Fourier integral operators.more » « less
-
Borehole seismic data is obtained by receivers located in a well, with sources located on the surface or another well. Using microlocal analysis, we study possible approximate reconstruction, via linearized, filtered backprojection, of an isotropic sound speed in the subsurface for three types of data sets. The sources may form a dense array on the surface, or be located along a line on the surface (walkaway geometry) or in another borehole (crosswell). We show that for the dense array, reconstruction is feasible, with no artifacts in the absence of caustics in the background ray geometry, and mild artifacts in the presence of fold caustics in a sense that we define. In contrast, the walkaway and crosswell data sets both give rise to strong, nonremovable artifacts.more » « less
An official website of the United States government
